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Abstract: Cognitive radio (CR) is an effective technique for dealing with scarcity in spectrum 

resources and enhancing overall spectrum utilization. CR attempts to enhance spectrum sensing 

by detecting the primary user (PU) and allowing the secondary user (SU) to utilize the spectrum 

holes. The rapid growth of CR technology increases the required standards for Spectrum Sensing 

(SS) performance, especially in regions with low Signal-to-Noise Ratios (SNRs). In Cognitive 

Radio Networks (CRN), SS is an essential process for detecting the available spectrum. SS is 

divided into sensing time and transmission time; the more the sensing time, the higher the 

detection probability) and the lower the probability of a false alarm). So, this paper proposes a 

novel two-stage SS optimization model for CR systems. The proposed model consists of two 

techniques: Interval Dependent De-noising (IDD) and Energy Detection (ED), which achieve 

optimum sensing time, maximum throughput, lower and higher. The Simulation results 

demonstrated that the proposed model decreases the, achieves a higher especially at low SNRs 

ranging, and obtains the optimum sensing time, achieving maximum throughput at different 

numbers of sensing samples (N) and different SNRs from -10 to -20 dB in the case of N = 1000 

to 10000 samples. The proposed model achieves a throughput of 5.418 and 1.98 Bits/Sec/HZ at 

an optimum sensing time of 0.5ms and 1.5ms respectively, when N increases from 10000 to 

100000 samples. The proposed model yields an achievable throughput of 5.37 and 4.58 

Bits/Sec/HZ at an optimum sensing time of 1.66ms and 13ms respectively. So, it enhances the SS 

process than previous related techniques.  
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1 Introduction 

IRELESS networks and information traffic have risen at 

an exponential rate over the past decade, resulting in an 

overabundance of radio spectrum resources [1–2]. The radio 

spectrum is a restricted resource that is governed by rules and 

reputable organizations such as the United States Federal 

Communications Commission (FCC). The present radio 

spectrum allocation strategy assigns channels to specified 
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users that have licences for certain wireless technologies and 

services. Certain licenced users have access to those spectrum 

sections to transmit and receive data, whereas others are not 

allowed to use them even when they are vacant [3]. According 

to recent research, spectrum usage in the United States ranges 

from 15% to 85% under the fixed spectrum allocation (FSA) 

regime [4]. According to FCC data, some channels are highly 

used while others are rarely used, as seen in Fig. 1 [5]. 
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    Fig. 1 Radio spectrum occupancy [5]. 

The allocated spectrum regions are not always utilized by 

their owners, resulting in spectrum gaps. A spectrum hole, 

also known as white space, is a frequency band licensed to 

a PU but not used at a certain time or location. As a result, 

the radio spectrum is being used inefficiently [6–7]. As a 

result of the scarcity and inefficiency of spectrum 

management, an immediate method is required to improve 

radio spectrum access and achieve high network 

performance. A better technique to deal with spectrum 

scarcity is to manage it dynamically by sharing vacant 

channels with unlicensed users, known as Secondary Users 

(SUs), without interfering with PU transmissions. To 

overcome spectrum allocation issues, Opportunistic 

Spectrum Access (OSA), also known as Dynamic Spectrum 

Access (DSA), has been proposed. In contrast to the FSA, 

the DSA permits licensed and non-licensed users to share 

the spectrum, with the spectrum separated into several 

bandwidths allocated to one or more devoted users [8–9]. A 

CR system can learn from its surroundings, adapt to 

changing situations, and make judgements to make the best 

use of the radio spectrum. It enables SU to utilize the PU-

assigned radio spectrum when it is not in use, as shown in 

Fig. 2 [1, 3]. 

SS, spectrum sharing, spectrum mobility, and spectrum 

management are the four main objectives of a CR Network. 

SS scans the available spectrum for the presence of PUs. 

The spectrum management function manifests itself in the 

choice of the finest available channel that meets certain 

targets. Spectrum sharing tries to distribute spectrum gaps 

equally among SU. Spectrum mobility aims to maintain 

communication while transitioning to a better spectrum 

hole. Because interference with other users is forbidden, the 

primary task is SS. It is used to characterize the spectrum's 

occupancy conditions. It is often carried out in the 

frequency domain. To evaluate the performance of a 

spectrum sensor, two criteria are used: the sensor's 

capability to reliably locate unoccupied spectrum gaps 

without missing a PU and the sensor's capability to reduce 

the noise effect. SS is required for spectrum optimum use. 

ED is the easiest and simplest SS technique since it does 

not need information about the licenced user signal and has 

a short sensing time [10–11]. The frequency range under 

interest is sensed by the ED approach, and tests are 

performed to compare the energy obtained with a 

predefined threshold to detect the existence or absence of 

the PU [12]. Unfortunately, at low SNRs, the ED technique 

is not robust to noise, therefore impacting CR's 

performance and reliability [13–14]. Additionally, the ED 

SS approach is unable to separate noise from other signals. 

A novel two-stage SS model for CR systems is introduced 

in this paper to overcome the problems of the single-stage 

ED SS approach and determine the optimum sensing time 

for achieving maximum throughput. It is formed by two 

stages: the first stage consists of an IDD detector, while the 

second stage consists of an ED. The IDD stage is used to 

detect the PU signal in the presence of noise by 

counteracting the noise effect. The proposed model 

significantly retains the needed Pd and Pf of the CR system 

at the appropriate levels. This paper is organized as follows. 

Section 2 presents a literature review regarding the SS. 

Section 3 shows the proposed model and model discussion, 

while Section 4 presents simulation results and related 

discussion. The conclusion and future work are provided in 

Section 5. 

2. Related Works   

The main advantage of having a multistage detector is to 

combine the benefits of each detector based on the received 

signal. The SNR is the initial driving characteristic for the 

multistage detector. The early stages of detection are 

characterized by simplicity. However, when the SNR 

decreases, this simplicity reduces sensor accuracy. To attain 

improved sensing accuracy, another stage is used. 

Multistage SS has been widely investigated in the literature, 

as summarized below. ED is a basic SS approach that 

measures and compares the received signal energy to the 

noise energy. As a result, the existence or absence of a 

signal is announced. ED is blind concerning the required 

knowledge of the signal properties. The sensing accuracy of 

ED is limited at low SNR regions, as the missed detection 

probability increases as the SNR decreases [15]. To 

transcend the constraints of the single-stage ED approach, 

multiple two-stage SS approaches were presented. These 

approaches have significant advantages over their single-

stage counterparts, including increased   Pd and promising 

performance in low SNR conditions. The advantages of 

two-stage SS approaches can significantly increase CR 

performance. The majority of recent research works 

presume that ED is one of the adopted stages. Fast Fourier 

Transform (FFT), fuzzy logic, Maximum Minimal 

Eigenvalue (MME), Covariance Absolute Value (CAV), 

Fig. 2 Dynamic spectrum access [3]. 
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and waveform detection can be applied before or after the 

ED in the other stage [16–23]. 

The author’s proposed in [16] two-stage SS approaches 

for CR with adjustable thresholds that combine two-well 

techniques: wavelet denoising and energy detection. An ED 

approach is employed in this work to identify the 

availability or existence of a PU signal in the case of a high 

SNR value by comparing the energy of the received signal 

with threshold values. In the case of low SNR values, 

however, a wavelet denoising (WD) stage is performed 

before ED to reduce the noise effect and detect the PU 

signal in noisy surroundings. 

The authors of [17] developed a unique collaborative SS 

approach in CRN based on Estimated SNR with Adaptive 

Threshold (ESNR ADT). The proposed approach estimates 

SNR and selects either an ED with a fixed threshold or an 

ED with an adaptive threshold to increase detection 

performance at a fixed Pf = 0.1. The detector is chosen 

based on the estimated SNR value and the first threshold; if 

the estimated SNR value is higher or equal to this threshold 

then, an ED with a second threshold will be used; 

otherwise, an ED with an ADT will execute sensing 

operations. 

In Ref. [18], a hybrid sensing model for spectrum 

detection in CR is executed. The first path is 

constructed from two sequential sensing stages; in the 

first stage, an ED is used to identify the presence of 

the PU signal when the signal has not been detected. 

The presence of the PU signal is detected using a 

second stage called Maximum-Minimum Eigenvalue 

(MME). The second path is composed of two parallel 

stage detectors employing separate ED and MME to 

detect the PU signal separately. The two results are 

brought together to form a decision, and the final 

decision is taken using the combined results of the 

two paths' detection. The suggested hybrid sensing 

method, used to improve sensing performance, is 

validated using traditional techniques, but it suffers 

from computational complexity. 

The authors proposed an Improved-Two-Stage Detection 

(improved-TSD) approach for SS in [19]. There are two 

stages in the improved-TSD technique: the first stage 

contains two detectors, namely an ED using a single 

adaptive threshold (ED SAT) and an ED using two adaptive 

thresholds (ED TAT), organized in parallel, and the second 

stage contains a decision device (DD) that decides the final 

decision using the OR-rule. The proposed sensing method 

reduces sensing time, improves detection performance at  Pf 

= 0.1, and performs well at low SNRs.  

The authors illustrated in [20] an Improved Two-stage SS 

(ITSS) scheme, which consists of ED in the first stage and 

Maximum Eigenvalue Detection (MED) in the second 

stage. The ITSS algorithm framework includes an ED SS 

technique for the first stage because its average SS time is 

shorter. However, ED performs poorly in low SNR regions 

as compared to other SS approaches. To detect the presence 

of the PU in a specific PU channel, the ED SS approach 

first computes the received PU signal energy for that 

channel. If the calculated energy of the received PU signal 

exceeds the ED spectrum detection technique's pre-set 

threshold, the PU is considered to be occupying the channel 

otherwise, the PU is considered absent and the second stage 

is triggered. The second stage implements the MED 

technique to deliver better results than the ED SS approach.  

In [21], the authors proposed a two-stage SS process: in 

the first stage (coarse sensing), ED is used to detect PU’s 

signal; once the ED fails in detecting proceed to the second 

stage (fine sensing), where eigenvalues detection approach 

is performed. In this study, several eigenvalue methods 

performed well in the fine sensing stage. Furthermore, 

simulation results validate that this process leads to better 

detection performance than single stage ED at low SNR 

values and lower computational complexity than single 

stage eigenvalues detection.  

Two-stage SS is proposed using ED as the coarse stage 

and Renyi entropy-based detection as the fine stage in [22] 

to enhance the performance of single-stage detection 

methods and to mitigate noise uncertainty. Tsallis, Kapur, 

Shannon, and Renyi entropy-based detection have been 

used, and their performances are compared to select the best 

performer. Although the performance comparison is 

executed among conventional ED, entropy-based detection, 

and the proposed two-stage techniques over the AWGN 

channel are performed. According to the comparison 

results, the Renyi entropy outperforms other entropy 

methods, which offer very good performance in the 

presence of noise uncertainty. 

In [23], the author’s presented a reciprocal two-stage SS 

approach to improve the efficiency of SS in the presence of 

noise uncertainty. The proposed method consists of two 

different stages: the first stage is wavelet denoising, and the 

second stage is an adaptive threshold ED, each has a certain 

rule. The first stage is used to gain detailed information 

about the noise to aid in adapting the threshold of the 

second stage. This demonstrates that the suggested model 

performs well in the presence of noise uncertainty since it 

increases the detection probability.  

Anaand et al. [24] introduced a two-stage spectrum 

sensing method to improve the sensing performance of 

current single-stage spectrum detection approaches. In the 

first step, the ED detects the PU signal; if it is not detected, 

the MME is employed in the second stage.  

Aparna Singh Kushwah et al. presented a two-spectrum 

sensing algorithm in [25] to improve the sensing 

performance of traditional single stage spectrum detection 

approaches. In the proposed scheme, ED is utilized in the 

first stage to identify the presence of a PU signal, and if it 

fails to detect the signal, MME detection is used in the 

second stage to determine the presence of a PU signal. The 

channel is sensed by using ED in the first sensing stage. If 

the decision metric exceeds the first threshold, the channel 

is considered to be occupied. Otherwise, the incoming 

signal is evaluated by a second sensing stage that includes 

MME detection. If the component detection metric exceeds 

a second threshold, the channel is considered occupied; 

otherwise, it is declared vacant. 
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Table [1] provides a summary of previous studies [16–

25]. This table provides comprehensive details regarding 

prior two-stage work, including the PU SNRs 

(SNRp), Pd , Pf and the sensing samples number (N). 

According to prior research, It can be shown that the 

various two-stage SS approaches have a relatively high 

computing complexity, substantial sensing overheads, low 

and average sensing reliability, and poor efficiency under 

uncertain noise environments. Lastly, in the case of low 

SNRs, the step of differentiating between PU signals and 

noise is missing. This is a very important step for reliable 

SS. However, it can be concluded that for better sensing 

accuracy, the ED SS technique must be exerted in the 

sensing stage with another stage. In this paper, a novel two-

stage SS model is provided to enhance the performance of 

the SS process to detect the PU signals at low SNRs 

efficiently. The presented work adopts a noise reduction 

technique IDD as a first stage before the ED stage.  

The ED is used in the second stage for its efficiency at 

high SNRs and simplicity but the ED SS approach is unable 

to separate noise from other signals then the sensing 

accuracy of ED is limited at low SNR regions, as the 

detection probability decreases when the SNR decreases so 

the IDD stage is employed for noise elimination and for 

separating the licenced user signals from noise to 

accomplish accurate detection and efficient SS. In the IDD 

stage using Wavelet de-noising With the Wavelet 

transform, the received signal's time and frequency 

characteristics are presented, and the resulting 

approximation and detail coefficients reflect the low and 

high frequency components of the signal under analysis, 

respectively. As noise is mainly composed of high 

frequency components, noise reduction is accomplished by 

thresholding the detail coefficients using the interval 

thresholding technique, which first divides the coefficients 

at each level into blocks and then selects a local threshold 

for each interval.  This signal division makes 

heteroscedastic noise almost homoscedastic inside each 

interval, improving the efficiency of de-noising, and then 

using the inverse wavelet transform, the signal is rebuilt 

using the modified coefficients. 

3. Proposed Model 

From the previously suggested approaches, it was noted 

that numerous two-stage spectrum sensing methods exhibit 

comparatively high computational complexity, increased 

sensing overheads, yield moderate sensing accuracy, and 

poor performance in the face of uncertainty noise 

conditions. Notably, in the case of low Signal-to-Noise 

Ratio (SNR), the step in differentiating between PU signals 

and noise is missed. The ability to differentiate PU activity 

from noise is deemed pivotal for ensuring accurate 

spectrum sensing. Additionally, these methods often require 

full or partial prior knowledge of the primary user signals or 

noise power.  to address the challenges and problems 

associated with both one-stage and two-stage spectrum 

sensing techniques, we propose a solution that involves 

employing one of the noise reduction and cancellation 

techniques, this approach aims to extract signals from the 

noise and yields high Pd and low Pf  at low SNR ratios, 

especially at -20 dB. 

The proposed two-stage SS model is performed by using 

IDD in the first stage and followed by ED in the second 

stage. The proposed two-stage model is known as the IDD-

ED detector, as displayed in Fig. 3. The objective of the 

proposed model is to obtain accurate detection and efficient 

SS and gain simplicity and reliability in finding the 

optimum sensing time and maximum throughput, especially 

in the case of low received SNRp for reliable SS 

performance. 

 

 

Fig. 3 Two stages proposed IDD–ED model. 

Noise randomly affects the received signal and can be 

caused by a variety of causes, including time-varying 

thermal noise at the communication system's receiver and 

noise interference from the surrounding atmosphere. 

Moreover, several factors, such as electromagnetic 

Interference influence the received signal. So Noise 

reduction is one of the most difficult challenges in 

communication systems, and it has received a great deal of 

attention in recent years. The need to reduce undesirable 

noise in desired signals has given rise to noise cancellation 

techniques and technology. Unfortunately, few articles on 

noise cancellation have been presented in the context of CR 

systems. Throughout the communication process, most 

communication systems use filters to cancel noise. 

Additionally, a CR system may also involve de-noising 

methods in the whole SS phase to improve sensing 

accuracy [26–33]. 

Therefore, it became very necessary to introduce an 

effective method to eliminate these undesirable noises from 

these signals of importance. 

 



Iranian Journal of Electrical & Electronic Engineering, Vol. 20, No. 01, March 2024                           5 

 

 

Table 1 Summary of the prior two–stage techniques 

 

 

 

 
N 

 
   𝐍𝐒 
 

 
    𝐏𝐅 

 
    𝐏𝐝 

 
SNRp 
(dB) 

 
Two Stage 
Techniques 

 
N 

 
   𝐍𝐒 
 

 
    𝐏𝐅 

 
    𝐏𝐝 

 
SNRp 
(dB) 

 
Two Stage 
Techniques 

100000 1000 0.1 0.97 –10  

 

ED + ED–ADT 

ESNR_ADT 

[17] 

1000 1000 0 0.90 –10  

 

WD +  ED  

[16] 

100000 1000 0.1 0.28 –15 10000 1000 0.04 0.90 –15 

100000 1000 0.1 0.25 –16 80000 1000 0 0.92 –15 

100000 1000 0.1 0.21 –17 100000 1000 0 0.90 –15 

100000 1000 0.1 0.20 –18 10000 1000 0.60 0.90 –20 

100000 1000 0.1 0.19 –19 50000 1000 0.18 0.90 –20 

100000 1000 0.1 0.18 –20 100000 1000 0.04 0.91 –20 

1000 – 0.1 0.96 –10  

Improved TSD 

[(ED_SAT) + 

(ED_TAT)] 

 [19] 

10,000 – 0.1 1 –10  

multi–path 

hybrid sensing 

model 

[18] 

1000 – 0.1 0.30 –15 10,000 – 0.1 0.88 –15 

1000 – 0.1 0.26 –16 10,000 – 0.1 0.80 –16 

1000 – 0.1 0.25 –17 10,000 – 0.1 0.67 –17 

1000 – 0.1 0.20 –18 10,000 – 0.1 0.58 –18 

1000 – 0.1 0.19 –19 10,000 – 0.1 0.52 –19 

1000 – 0.1 0.18 –20 10,000 – 0.1 0.43 –20 

10^4–10^5 2000 0.01 0.99 –10  

 

ITSS  

[ ED + MED ]  

[20] 

10^4-10^5 2000 0.2 0.99 –10  

 

ITSS 

[ ED + MED ] 

[20] 

10^4–10^5 2000 0.01 0.85 –15 10^4–10^5 2000 0.2 0.85 –15 

10^4–10^5 2000 0.01 0.82 –16 10^4–10^5 2000 0.2 0.82 –16 

10^4–10^5 2000 0.01 0.80 –17 10^4–10^5 2000 0.2 0.80 –17 

10^4–10^5 2000 0.01 0.79 –18 10^4–10^5 2000 0.2 0.79 –18 

10^4–10^5 2000 0.01 0.77 –19 10^4–10^5 2000 0.2 0.77 –19 

10^4–10^5 2000 0.01 0.75 –20 10^4–10^5 2000 0.2 0.75 –20 

3000 2000 0.1 1 –10  

 

ED + MMME 

[21] 

 

3000 2000 0.1 1 –10  

 

ED + MME 

[21] 

 

3000 2000 0.1 1 –15 3000 2000 0.1 1 –15 

3000 2000 0.1 0.99 –16 3000 2000 0.1 0.98 –16 

3000 2000 0.1 0.95 –17 3000 2000 0.1 0.90 –17 

3000 2000 0.1 0.86 –18 3000 2000 0.1 0.82 –18 

3000 2000 0.1 0.70 –19 3000 2000 0.1 0.56 –19 

3000 2000 0.1 0.53 –20 3000 2000 0.1 0.50 –20 

– – 0.1 0.2 –10  

 

WD + AED  

[23] 

1000  10^4 0.05 1 –10  

 

ED +  Renyi 

entropy 

[22] 

– – 0.1 0.1 –15 1000 10^4 0.05 0.99 –15 

 1000 10^4 0.05 0.98 –16 

1000 10^4 0.05 0.97 –17 

1000 10^4 0.05 0.93 –18 

1000 10^4 0.05 0.86 –19 

1000 10^4 0.05 0.72 –20 

100000 1000 0.1 1 -10  

 

ED + MME  

[25] 

100000 - 0.1 1 -10  

 

ED + MME  

[24] 

100000 1000 0.1 1 -15 100000 - 0.1 1 -15 

100000 1000 0.1 1 -16 100000 - 0.1 0.89 -20 

100000 1000 0.1 1 -17  

100000 1000 0.1 0.99 -18 

100000 1000 0.1 0.98 -19 

100000 1000 0.1 0.89 -20 
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Researchers have suggested a variety of signal de-

noising approaches for this purpose, including linear 

methods (Fourier transform de-noising, Wiener 

filtering) and nonlinear methods (wavelet transform de-

noising). Due to their relative simplicity, linear signal 

de-noising techniques were often utilized for noise 

removal up to 1990. These techniques are typically 

acceptable but have certain limitations since they 

assume that the signals are stationary. However, real-

world signals frequently exhibit non-stationary 

statistical characteristics. Because they can reveal both 

the spectral and temporal information in a signal at 

once, nonlinear techniques like the wavelet transform 

have become an active topic of research over the last 

two decades [34]. 

De-noising technologies are classified into three types: 

time-frequency technologies, matrix-factorization 

technologies, and adaptive-filter de-noising 

technologies. Time-frequency de-noising methods allow 

for the study of noise-induced signals in both the 

frequency and time domains. WD, IDD, and 

decomposition de-noising are Samples of approaches 

that are related to this category the second type of de-

noising approach is matrix-factorization de-noising, 

which is based on the examination of signal space. 

Singular value decomposition and nonnegative matrix 

factorization are two examples of matrix-factorization 

algorithms. Singular value decomposition and non-

negative factorization may both factorize a large or 

scattered matrix into smaller knowledge sets that allow 

easier examination of a symbol. The third type of de-

noising technology is adaptive filtering and de-noising, 

which uses adaptive algorithms to cancel noise. The 

Least-Mean-Square (LMS) and the Normalized Least-

Mean-Square (NLMS) filters are Samples of the 

techniques that belong to adaptive filtering de-noising 

these filters can readjust their parameters to remove 

noise from a symbol. 

In high-performance signal processing tool [35–37], 

Wavelet transform (WT) has been proven to be a very 

effective approach for de-noising signals when 

compared to traditional methods like the Fourier filter 

and Savitzky–Golay filter [38]. The accuracy of the 

reconstructed signal depends on both the thresholding 

method and the threshold values when a noisy signal is 

de–noised using the WT methodology. There are two 

basic ways for compressing wavelet coefficients hard 

thresholding and soft thresholding [39, 40]. About the 

selection of thresholds, several methods have been 

investigated [41]. The standard approaches include the 

level-dependent and interval-dependent threshold 

selections. The level thresholding approach, which 

chooses single universal threshold for each level and 

applies it to threshold all the coefficients at the level. In 

order to threshold the coefficients inside each interval, 

the interval thresholding technique first divides the 

coefficients at each level into blocks, and then selects a 

local threshold for each interval This signal division, 

make heteroscedastic noise be almost homoscedastic 

inside each interval, improving the efficiency of de-

noising. 

Wavelet de-noising with WT, the received signal's 

time and frequency characteristics are presented, and the 

resulting approximation and detail coefficients reflect 

the low and high frequency components of the signal 

under analysis, respectively. As noise is mainly 

composed of high frequency components, noise 

reduction is accomplished by thresholding the detail 

coefficients. The de-noising process typically consists of 

the following three steps:  

• Decomposition: the noisy signal is converted into a 

collection of orthonormal wavelet basis functions, 

selecting a mother wavelet and a maximum 

decomposition level followed by computing the 

decomposition coefficients at each level. 

• Thresholding: In this stage, the threshold values 

for each level are evaluated, and the coefficients at 

each level are applied to the threshold. 

• Reconstruct: Using the inverse wavelet transform, 

the signal is rebuilt using the modified 

coefficients. 

 

Hence the packet of wavelet technique is a 

generalization of wavelet decomposition that provides a 

wide variety of signal analysis scales. In packet 

wavelets analysis, the details as well as the 

approximations are divided into  𝟐𝒏 different ways to 

represent the signal where the decomposition level is n. 

Several bases are produced by single wavelet packet 

decomposition, which provides a more complicated and 

adaptable analysis. The best level of signal 

decomposition is chosen using an entropy-based 

criterion. Fig. 4 displays the packet of wavelet 

decomposition and reconstruction trees.  

The input signal 𝑅 is divided by using filters 𝐺𝑜  and 

𝐺1 into a low pass component 𝑅𝑜 and a high pass 

component 𝑅1, which are decimated (down-sampled) by 

factor two. The low pass component is then divided 

more into 𝑅00 and  𝑅01, which are again decimated by 

factor two. This procedure is repeated as needed. The 

DWT outputs are the band pass coefficients 𝑅1 ,𝑅01, 

 𝑅001,……, and the last low pass coefficients  𝑅000….0 

The decimation ensures that the input sample rate and 

total output sample rate are identical, so there is no 

redundancy in the transform. The signal is reconstructed 

using a pair of reconstruction filters  𝐻𝑜 and  𝐻1 are 

utilized in the configuration of Fig. 4 where  𝑅000 may 

be reconstruction from 𝑅0000  and 𝑅0001; and then  𝑅00 
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from  𝑅000 and 𝑅001; and so on back to 𝑅, using an 

inverse tree of 𝐻 filters. 

 
 

Fig. 4 Packet of wavelet decomposition and 

reconstruction trees 

 

The ED is used at the second stage for its efficiency 

and simplicity, so the IDD stage is employed for noise 

elimination and for separating the licenced user signals 

from noise to accomplish accurate detection and 

efficient SS. To calculate the energy of the received 

signal, the samples are squared and integrated across the 

observation period, and the integrator output is then 

compared to the threshold. If the integrator's output 

exceeds the threshold the assigned radio spectrum is 

then assumed to be occupied. Otherwise, it is regarded 

as empty.  

3.1  The Proposed Two–Stage Model Analysis 

The PU signal can be detected by using the following 

hypothesis for the received signal [42]: 

 

     R(n) = {
h(n) S(n) + w(n)       HP =  H1   

w(n)         HP =H0             
    (1)  

 

Where [𝑅(𝑛)]  represents  the received signal and 𝑆(𝑛) 

represents the PU signal of transmitted power 𝑃𝑝 , ℎ(𝑛) 

represents the channel gain, 𝑤(𝑛) represents the 

Additive White Gaussian Noise (AWGN) at the 

cognitive user receiver, which is considered to be a 

Circularly Symmetric Complex Gaussian (CSCG) 

random process with zero mean and one–sided power 

spectral density 𝑁𝑜 (i.e., 𝑤(𝑛)~ 𝒞𝒩(0, 𝑁𝑜)), and 

𝑛 denotes the time index. 𝐻0  is the null hypothesis, 

which denotes the absence of PU and 𝐻1 is the 

alternative hypothesis, which denotes that PU is present.  

By comparing the detectors decision parameter the 

probabilities of false alarm and detection can be 

determined, which determines under the hypothesis 

 𝐻𝑃 = 𝐻0 and 𝐻𝑃 = 𝐻1, respectively with a predefined 

threshold  𝜓. For ED, the decision parameter 𝐷𝑝𝐸𝐷 is 

determined by the energy of the samples that were taken 

during the observation window duration τ, and it is 

represented by equations 2, and 3. 

 

𝐷𝑝𝐸𝐷 =
1

𝑁
∑|𝑅(𝑛)|2

𝑁

𝑛=1

                                                    (2) 

𝐷𝑝
𝐸𝐷 

≥
<

 𝜓                                                                            (3) 

 

Where N denotes the number of sensing samples (𝑁 =
𝜏 𝑓𝑠); with  𝑓𝑠  indicating the sampling frequency under 

hypothesis 𝐻𝑃 = 𝐻0, we find 

 

 𝑅1 = 𝑤 (𝑛)                                                                       (4) 

                                                        

Then decision parameter will be: 

𝐷𝑝𝐸𝐷|𝐻0 =
1

𝑁
∑|𝑤(𝑛)|2

𝑁

𝑛=1

                                            (5) 

Which is the squared sum of AWGN w (n). As a result 

of this a chi–square distribution of N degrees of freedom 

for real valued noise case, and 2N degrees of freedom 

for complex valued noise case.  

In case of complex noise, and by using the application 

of the Central Limit Theorem (CLT), chi–square 

Probability Density Function (PDF) of huge N can be 

evaluated by a Gaussian distribution of mean   μ0 = No, 

and variance σ0
2 =

1

N
No

2. So, an approximated PDF can 

be indicated as follows: 

 

𝑓𝑀[𝑅(𝑛)]|𝐻0
(𝜉) =

1

√2𝜋𝜎0

𝑒−(𝜉−𝜇0)2/2𝜎0
2
,   𝜉 ≥ 0   (6) 

Then, 

 

𝑃𝑓 = ∫ 𝑓𝑀|𝐻0

∞

𝜉=𝜓

(𝜉)𝑑𝜉                                                  

  

𝑃𝑓 = ∫
1

√2𝜋𝜎0

∞

𝜉=𝜓

𝑒−(𝜉−𝜇0)2/2𝜎0
2
𝑑𝜉                               (7) 

 

Let 𝑡 =
𝜉−𝜇0

𝜎0
   ,   Then,       𝜉 = 𝜎0𝑡 + 𝜇0,   ,    𝑑𝜉 = 𝜎0𝑑𝑡,  

Equation (7) can be expressed as: 

 𝑃𝑓 =
1

 √2𝜋𝜎0
   ∫ 𝑒−

𝑡

2  𝜎0 𝑑𝑡,     𝑃𝑓 = 𝑄(
𝜓−𝜇0

𝜎0
 )

∞

𝑡=
𝜓−𝜇0

𝜎0

     (8)  

Where 𝑄(. ) represents the complementary distribution 

function of the standard Gaussian, i.e.,   

 

𝑄(𝑥 ) =
1

 √2𝜋
 ∫ 𝑒−

𝑡
2   𝑑𝑡

∞

𝑡

                                              (9) 
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Then Apply μ0 = No , and  σ0
2 =

1

N
No

2  in to Equation 

(8), so the 𝑃𝑓 is defined as in equation (10): 

 

𝑃𝑓 = 𝑄 ((
𝜓

𝑁𝑜

− 1) √𝑁)                                                 (10) 

 

With  𝑁 = 𝜏 𝑓𝑠, then      

𝑃𝑓(𝜓, 𝜏) = 𝑄 ((
𝜓

𝑁𝑜

− 1) √𝜏 𝑓𝑠)                                 (11) 

Under the hypothesis 𝐻𝑃 = 𝐻1 , we find 

 𝑅2 = ℎ(𝑛) ∗ 𝑆𝑝(𝑛) + 𝑤(𝑛)                                           (12) 

The decision parameter 𝐷𝑝𝐸𝐷 has a distributed PDF of 

non–central chi–square 𝑓𝑀[(𝑅(𝑛)] |𝐻1
(𝜉) of 2N degrees of 

freedom and non–certainty parameter 2|ℎ𝑝𝑠|
2

𝛾𝑃  with 

𝛾𝑃 =
𝑃𝑃

𝑁𝑜
  representing the PU SNR. For notational 

simplicity, let 𝛾 = |ℎ𝑝𝑠|
2

𝛾𝑃  represent the SNR of the 

received signal. 

Once again for huge N according to CLT, the decision 

parameter has a Gaussian PDF of mean  μ1 =

|hps|
2

PP + No = (γ + 1)No ,and variance σ1
2 =

1

N
(γ + 1)2No

2 under the condition that w(n) consider 

CSCG random processes as equation (10), the Pd is 

evaluated by  Pd = Q(
ψ−μ1

σ1
 ), and after insertion of  μ1 

and  σ1 values, and then the Pd represented as follows: 

𝑃𝑑(𝜓, 𝜏) = 𝑄 ((
𝜓

(𝛾 + 1)𝑁𝑜

− 1) √𝜏 𝑓𝑠 )                 (13) 

The core equations for evaluating both detection and 

false alarm probabilities for a pre–defined decision 

threshold ψ are represented in Equations (11) and (13). 

It can rewrite them such that one is a function of the 

other the  Pd  is related to the  Pf as follows: 

 

𝑃𝑑 = 𝑄 (
1

(𝛾+1)
(𝑄−1(𝑃𝑓) − 𝛾√𝜏 𝑓𝑠 ))                      (14)       

 

To guarantee effective protection for a PU network 

from harmful interference of a secondary network, a 

restriction of the target 𝑃𝑑 is typically adopted, 

especially in a low SNR environment. In IEEE 802.22 

WRAN, the targeted probability of detection  Pd
̅̅̅̅ = 0.9 

for the SNR of −20 dB then, for a target Pd
̅̅̅̅ , the decision 

threshold can be obtained from Equation (13) as 

follows: 

 

𝜓 = (𝛾 + 1)𝑁𝑜 (
1

√𝜏 𝑓𝑠 
𝑄−1(𝑃𝑑

̅̅ ̅) + 1)                   (15) 

 

By substituting from Equation (15) into Equation (11), 

then  𝑃𝑓  for a target  𝑃𝑑 is expressed by: 

 

𝑃𝑓(𝜏) = 𝑄 ((𝛾 + 1)𝑄−1(𝑃𝑑
̅̅ ̅) + 𝛾√𝜏 𝑓𝑠 )                  (16) 

 

For noise reduction, the IDD technique is used as the 

first stage for an efficient SS process. Wavelet 

transformation is widely used in signal de–noising 

applications. Each time, the CR must process the 

sampled signal inside the licensed user's band. By 

measuring the energy of the signal R, which is 

determined by Equation 2, energy sensing aims to 

determine whether H0  or   H1, is true. Equations (4) and 

(12) can be derived as follows: 

 

 𝑅1 = 𝑤(𝑛)                                                                      (17) 
 

  𝑅2 = 𝑆𝑝(𝑛) + 𝑤(𝑛)                                                      (18) 

 

The received signal's wavelet transform is shown in 

the following way: 

 
[𝑎𝑅 , 𝑑𝑅] = 𝑊𝑅 = W(𝑠 + 𝑤) = 𝑊S + 𝑊𝑊               (19) 

 

Where W stands for the DWT's left invertible 

transformation matrix. The details that represent the 

majority of the noise power in the wavelet 

transformation domain are contained in the detailed 

information dR. The inverse wavelet transform can 

restore the required signal with reduced noise influence 

after thresholding the detailed information, 

which improves the ED process. The inverse wavelet 

transform can restore the required signal with reduced 

noise influence after thresholding the detailed 

information, which improves the ED process. 

 

3.2 IDD-ED Maximum Throughput and Optimum 

Sensing Time Analysis 

The frame duration, as represented in Fig.5, consists 

of one sensing slot τ and one data transmission slot T −
τ.The Pd and Pf are two parameters associated with 

SS the higher the  Pd, the better the PU can be protected. 

However, from the point of view of the SUs the lower 

the Pf, the greater chance the spectrum holes can be 

exploited efficiently which leads to the higher the 

achievable throughput for the SUs. Thus, a fundamental 

choice for the secondary network between sensing 

capability and achievable throughput must be handled. 
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Fig. 5 Frame duration of the conventional CR [43] 

 

For a mathematical representation of this choice 

consider C0 , C1 are the channel capacities of the 

secondary network when it operates in the absence or 

presence of the PU, respectively. Where the transmit 

power of SU is  Ps and the transmit power of PU is PP 

and No is the spectral density of the AWGN noise so the 

signal–to–noise ratios of the PU and SU are SNRP =
 PP

No
 

and SNRS =
PS

 No
 , respectively Then, 

 

  C0  =  log2(1 +  SNRS) 

C1 = log2 (1 +
Ps

PP+N0
) = log2 (1 +

SNRs

SNRP+1
)          (20) 

 

For a certain frequency band of interest, 

consider P(H1), P(H0) are the probabilities which 

represent the presence or absence of the PU, 

respectively. There are two scenarios for which the 

secondary network can operate at the PUs frequency 

band. When the PU is not active, and the SU produces 

no false alarm, the achievable throughput of the 

secondary network is represented by 

 

   Z0(τ) =
T−τ

T
 (1 − Pf)P(H0)C0                          (21) 

 

When the PU is active but is not identified by the 

SU, the achievable throughput of the secondary network 

is represented by 

 

Z1(τ) =
T−τ

T
 (1 − Pd)P(H1)C1                     (22) 

 

Let the average achievable throughput is represented by: 

 

Z(τ) = Z0(τ) + Z1(τ)                     (23) 
maxτ  Z(τ) = Z0(τ) + Z1(τ) 
Using  

PD(τ) ≥  Pd ̅̅̅̅                                                                        (24) 
 

By applying the proposed sensing–through hput model 

for the ED scheme, then, from Eqs. (21) to (24) will be: 

 

Z0(𝜓, τ) =
T−τ

T
 (1 − Pf(𝜓, τ))P(H0)C0        (25) 

Z1(𝜓, τ) =
T−τ

T
 (1 − Pd(𝜓, τ))P(H1)C1        (26) 

 

So, the average throughput is given by: 

 

Z(𝜓, τ) = Z0(𝜓, τ) + Z1(𝜓, τ)                    (27) 

 

So, the optimum problem can be evaluated as: 

maxτ  Z(𝜓, τ) = Z0(𝜓, τ) + Z1(𝜓, τ)      

Using   Pd(𝜓, τ) ≥  Pd̅                           (28) 

 

The condition of the previous optimum problem can 

be met through choosing a detection threshold 𝜓ο 

as  Pd(𝜓o, τ) =  Pd̅. If there is 𝜓1 < 𝜓ο, then according 

to Eq. (13)  Pd(𝜓1, τ) >   Pd(𝜓o, τ) as  Q(S)  is decreases 

monotonically with S, which will satisfy the condition. 

Also, from Eq. (11), it can be shown that  Pf(𝜓1, τ) >
  Pf(𝜓o, τ). From Eq. (25) to Eq. (27), it can be 

obviously found that  Z(𝜓1, τ) < Z(𝜓o, τ). This means 

that the detection threshold  𝜓 = 𝜓ο  satisfies the 

equality condition and allows maximum throughput Z 

(τ∗). Thus, the optimum problem leads to the following: 

 

maxτ  Z(τ) = Z0(τ) + Z1(τ) 

   With   0 < τ < T      and    𝜓 = 𝜓ο                 (29) 

 

Where, 

Z0(τ) =
T−τ

T
 (1 − Q ((γ + 1)Q−1(Pd̅) +

                                                     γ√τ fs )) P(H0)C0       (30) 

      

 Z1(τ) =
T−τ

T
 (1 − Pd̅)P(H1)C1                                 (31) 

 

Mathematically, Z(τ) should be a unimodal function 

in the range 0 < τ < T  to solve this optimum problem. 

Denote τ∗ as the optimum sensing time, so z(τ) is said 

to be a unimodal function if it is monotonically 

increasing for 0 < τ < τ∗ and then monotonically 

decreasing for  τ∗ < τ < T, with a unique optimum 

point at τ = τ∗. This can be satisfied under the following 

three conditions: 
dz(τ)

dτ
|τ=0 > 0. 

 
 dz(τ)

dτ
|τ=T < 0.   

 

There is a unique τ∗, where 0 < τ < T , such 

that   
dz(τ)

dτ
|τ=τ∗ = 0. 

The rest of this subsection verifies that z(τ) matches 

these previous conditions. For convenience, denote ∝=

(γ + 1)Q−1(Pd̅) and β = γ√fs . It can be noticed that β 

is always positive while  ∝ is a negative value since Pd̅ 

is above 0.5 for practical considerations. From Eq. (30) 

and (31): 

 
dz0(τ)

dτ
=

d

dτ
(P(H0)C0

T−τ

T
 (1 − Q(∝ +β√τ )))  
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dz0(τ)

dτ
=  P(H0)C0 (

−1

T
+

1

T
 Q(∝ +β√τ ) +

         
T−τ

T

β

√8πτ
 exp (−

(∝+β√τ )
2

2
))                            (32) 

, and  
dz1(τ)

dτ
=

−1

T
 (1 − Pd̅)P(H1)C1                       (33) 

 

It can be clearly seen that  
dz1(τ)

dτ
 in Eq. (33) is a 

constant value. This means that z0(τ) is responsible for 

satisfying the preceding conditions. To show this, 

firstly  
dz0(τ)

dτ
|τ=0 = ∞ > 0, and this matches the first 

condition.  

Also,   
dz0(τ)

dτ
= P(H0)C0 (

−1

T
+

1

T
 Q(∝ +β√T )) < 0 

since Q(S) ≤ 1 for all S, and this satisfies the second 

condition. Finally, to prove that z0(τ) satisfies the third 

condition, put 
dz0(τ)

dτ
= 0 in Eq. (32), this will result 

 

(∝ +β√τ )
2

= −2 ln ((
√8πτ

β(T−τ)
) (1 − Q(+β√τ )))  (34) 

 

The desired optimum sensing time  τ∗ the time 

corresponds to the intersection of the two functions in 

the previous equation. So to prove that there is only one 

optimal point in the entire range 0 < τ < T, it should be 

verified that these functions intersect each other at only 

one point. The optimum sensing time  0 < τ∗ < T that 

matches this equality and the high performance of the 

proposed model will be obviously investigated in the 

simulation results in the following section. 

 

4. Results OF Proposed Model 

In this section, we describe the simulation results 

and analysis of the proposed two-stage model, 

which was executed in MATLAB. With a 

sampling frequency of 6 MHz and a zero–mean 

AWGN noise over 1000 Monte Carlo simulations 

with an SNR varying from −10 to –20 dB. 

 

4.1 Result of the Proposed Model 𝐏𝐝, 𝐏𝐟 for Various    

Values of N and SNRp from −10 to −20 dB 

The Pf indicates how frequently PU is potentially 

subject to CR interference. Pd is one of the key 

parameters in CRN used to estimate system 

performance. The value of Pd should be in accordance 

with IEEE 802.22 WRAN standard, as maximum as 

possible under the constraint of  Pf. In Fig. 6, it is shown 

that when the number of samples increased the Pf 

decreased. Further, the Pd obtained from the simulation 

is shown in the figure. This demonstrates that the 

desired theoretical target Pd has been attained.    

 

Fig. 6 Pd and Pf Vs N from 10000 to 100000 at  

Different SNRp  

 

Fig.6 shows the results of the proposed model Pd and 

Pf  for different values of N and SNRp. In case of low 

SNRp and with the increase of N from 10,000 to 

100,000, a very low value of  Pf  can be obtained when 

the targeted  Pd  is 0.90. As shown at SNRp from −10 to 

−19 dB and at N=100,000, the value of the Pf equal 0 

and when SNRp = −20 dB, the value of Pf equal 0.03.  

 

4.1.1 Comparison between the Related Two Stage 

Methods and the Proposed Model 𝐏𝐝 and 𝐏𝐟  

As shown in Fig.7 and Fig.8 the simulation results of 

the proposed model Pd and Pf  for different values of 

SNRp and at N=100000 compared to prior relevant 

work, and it Validates that the proposed model improves 

the sensing Performance and helps to address the issues 

of high Pf rates, poor detection accuracy at low SNRs 

level, and noise uncertainties because it obtains higher 

Pd and lower  Pf , even at low SNRs from −15 to −20 dB 

compared to prior two stage methods. 
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Fig. 7 Comparison between Pd of the related two stage 

methods and the proposed model at different SNR for 

N=100000 

 
Fig. 8: Comparison between Pf of the related two stage 

methods and the proposed model at different SNR for 

N=100000 

 

4.2 Results of the Proposed Model Maximum 

Throughput and Optimum Sensing Time 

Fig. 9 shows the Proposed model Achievable 

throughput Versus Sensing time from N = 1000–10,000 

at different SNRp all the results are arranged in Table 2. 

It is seen that the maximum throughput is achieved at 

SNR = -10dB is 5.418 (bits/sec/HZ) at the optimum 

sensing time of 0.5ms and at SNR = -20dB is 1.98 

(bits/sec/HZ) at the optimum sensing time of 1.5ms. 

 
Fig.9 The suggested model Achievable throughput Vs. 

Sensing time from N =1000–10000 at diff. SNRp. 

 

 

Table 2 The Proposed model Achievable throughput and its Optimum sensing time at N from 1000 to 10000 and SNRp from −10 to 

−20 dB 
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N 

Optimum sensing time (ms) 
Achievable throughput 

Bits/Sec/HZ 

 
SNRp 

dB 

 
Proposed 

model  

1000–10000 0.5 5.418 -10 dB  

 

 
 (IDD+ED) 

1000–10000 0.833 5.38 -12 dB 

1000–10000 1.5 5.3 -14 dB 

1000–10000 1.5 4.7 -16 dB 

1000–10000 1.5 3.1 -18 dB 

1000–10000 1.5 1.98 -20 dB 
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Fig.10 shows the Proposed model Achievable 

throughput Versus Sensing time from N = 10,000–

100,000 at different SNRp all the results are arranged in 

Table 3. It is seen that the maximum throughput is 

achieved at SNR = -10dB is 5.37 (bits/sec/HZ) at the 

optimum sensing time of 1.66ms and at SNR = -20 is 

4.58 (bits/sec/HZ) at the optimum sensing time of 13ms.  

 
Fig.10 The proposed model Achievable throughput Vs. 

Sensing time from N =100000–100000 at diff. SNRp. 

5. Conclusion and Future Work 

A novel two-stage SS model for CR systems that 

achieves optimum sensing time, maximum throughput, 

lower  Pf and higher Pd and its performance evaluation 

are presented. In this paper, the proposed model 

provides a solution for detection, false alarm 

performance, and noise uncertainty at low values of 

SNR in CR systems. Therefore, the two-stage interval 

dependent de-noising and ED model is proposed to 

perfectly detect the PU signals at different low SNRs. At 

low SNRs, the ED method is ineffective in detecting the 

existence of the PU due to the noise issue in the 

received signals. So at low SNR, there is a need to use 

sequential detectors for accurate sensing detection 

results. Therefore, the interval dependent de-noising 

technique is used as the first detector for improving the 

signal reconstruction to further reduce the noise effect 

and accurately detect the PU signals. The results of the 

simulation show that the proposed model yields high Pd 

and low Pf  at low SNR ratios from (-15 to -20) dB, and 

also shows that the suggested model enhances the rate 

of false alarm rather than the previous related two- stage 

methods in terms of sensing a spectrum in low SNR 

regions and achieves a very better optimum sensing time 

which achieves  maximum throughput at different SNRs 

from -10 to -20 dB at  different N .The obtained results 

indicated that the proposed model improves the sensing 

process for a better performance of the cognitive radio 

systems.  

 

Future work can be done in this study by using another 

channel, like the fading channel (Rayleigh and Rician), 

which can be performed for detection instead of the 

AWGN channel, and it is recommended to analyse the 

impact of cooperative sensing case by employing the 

proposed model and evaluating its influence in the case 

of cooperative sensing performance. Another possibility 

is to modify the proposed model to analyze its 

behaviour in a MIMO sensing situation and evaluate its 

influence on sensing performance. 

 

Table 3 the proposed model Achievable throughput and its optimum Sensing time at N from 10,000 to 100,000 and SNRp from −10 

to −20 dB 
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Achievable throughput at SNR=-10

Achievable throughput at SNR=-12

Achievable throughput at SNR=--14

Achievable throughput at SNR=-16

Achievable throughput at SNR=-18

Achievable throughput at SNR=-20

N Optimum sensing time (ms) 
Achievable throughput 

Bits/Sec/HZ 
SNRp dB Proposed model 

10000–100000 1.66 5.37 -10 dB 

 (ED + IDD) 

10000–100000 1.66 5.38 -12 dB 

10000–100000 2 5.33 -14 dB 

10000–100000 3 5.22 -16 dB 

10000–100000 8 4.98 -18 dB 

10000–100000 13 4.58 -20 dB 
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